Retroclivalecchordosisphysaliphora: MR imaging and review of the literature. AJNR. 2004, 25: 1851-1855
2) ChiharaC, Korogi Y, Kakeda S, et al.
Ecchordosis physaliphora and its variants: proposed new classification based on high-resolution fast MR imaging employing steady-state acquisition. EurRadiol. 2013 Oct;23(10):2854-60.
3) Srinivasan A, Goyal M, KingstoneM.
Case 133:
Ecchordosis physaliphora. Radiology. 2008 May;247(2):585-8. No abstract available.
4) Golden LD, Small JE Benign notochordal lesions of the posterior clivus: retrospective review of prevalence and imaging characteristics. J Neuroimaging.2014 May-Jun;24(3):245-9.
5) KaulS, Khan OH, Edem I, et al.
Transclivalpseudomeningocele secondary to ecchordosisphysaliphora: case report and literature review. J NeurolSurg Rep. 2013 Dec;74(2):92-5.
6) KrishtKM, Palmer CA, Osborn AG, et al.
Giant ecchordosis physaliphora in an adolescent girl: case report. J NeurosurgPediatr. 2013 Oct;12(4):328-33. doi: 10.3171/2013.5.PEDS1395. Epub 2013 Aug 2.
7)Yamamoto T, Yano S, Hide T, et al.
A case of ecchordosis physaliphora presenting with an abducens nerve palsy: A rare symptomatic case managed with endoscopic endonasaltranssphenoidalsurgery. SurgNeurol Int. 2013;4:13.
8)AlkanO, Yildirim T, Kizilkiliç O, et al.
A case of ecchordosis physaliphora presenting with an intratumoral hemorrhage. Turk Neurosurg. 2009 Jul;19(3):293-6.
9)CiarpagliniR, Pasquini E, Mazzatenta D, et al.
Intraduralclivalchordoma and ecchordosis physaliphora: a challenging differential diagnosis: case report. Neurosurgery. 2009 Feb;64(2):E387-8; discussion E388.
10) Toda H, Kondo A, Iwasaki K.
Neuroradiologicalcharacteristics of ecchordosis physaliphora. Case report and review of the literature. J Neurosurg. 1998 Nov;89(5):830-4. Review.
Diagnosis and treatment of pancreatic metastases in 22 patients: a retrospective study.WorldJ SurgOncol. 2014 Sep 25;12:299.
2. SellnerF, Tykalsky N, De Santis M, et al.
Solitary and multiple isolated metastases of clear cell renal carcinoma to thepancreas: an indication for pancreatic surgery.
Ann SurgOncol. 2006 Jan;13(1):75-85. Epub 2006 Jan 1.
3. ZerbiA, Ortolano E, Balzano G, et al.
Pancreatic metastasis from renal cell carcinoma: which patients benefit from surgical resection?Ann SurgOncol. 2008 Apr;15(4):1161-8.
4. Law CH, Wei AC, Hanna SS, et al.
Pancreatic resection for metastatic renal cell carcinoma: presentation, treatment, and outcome. Ann Surg Oncol.2003 Oct;10(8):922-6.
5. Sohn TA, Yeo CJ, Cameron JL, et al.
Renal cell carcinoma metastatic to the pancreas: results of surgical management.J GastrointestSurg.2001 Jul-Aug;5(4):346-51.
6. Faure JP, Tuech JJ, Richer JP, et al.
Pancreatic metastasis of renal cell carcinoma: presentation, treatment and survival. J Urol. 2001 Jan;165(1):20-2.
7. AkatsuT, Shimazu M, Aiura K, et al.
Clinicopathological features and surgical outcome of isolated metastasis of renal cell carcinoma. Hepatogastroenterology. 2007 Sep;54(78):1836-40.
Imaging features
1. Ng CS, Loyer EM, Iyer RB, David CL, DuBrow RA, Charnsangavej C.
Metastases to the pancreas from renal cell carcinoma: findings on three-phase contrast-enhanced helical CT. AJRAm J Roentgenol. 1999 Jun;172(6):1555-9.
2. Klein KA, Stephens DH, Welch TJ.
CT characteristics of metastatic disease of the pancreas. Radiographics. 1998 Mar-Apr;18(2):369-78.
3. VincenziM, Pasquotti G, Polverosi R, et al.
Imaging of pancreatic metastases from renal cell carcinoma. Cancer Imaging. 2014 Apr 22;14:5.
4. PalmowskiM, Hacke N, Satzl S, et al.
Metastasis to the pancreas: characterization by morphology and contrast enhancement features on CT and MRI. Pancreatology. 2008;8(2):199-203.
5. AscentiG, Visalli C, Genitori A, et al.
Multiple hypervascular pancreatic metastases from renal cell carcinoma: dynamic MR and spiral CT in three cases. Clin Imaging. 2004 Sep-Oct;28(5):349-52.
6. Tsitouridis I, Diamantopoulou A, Michaelides M, et al.
Pancreatic metastases: CT and MRI findings. DiagnIntervRadiol. 2010 Mar;16(1):45-51.
RCC and ADC value
1. Choi YA, Kim CK, Park SY, et al.
Subtype differentiation of renal cell carcinoma using diffusion-weighted and blood oxygenation level-dependent MRI.AJR Am J Roentgenol. 2014 Jul;203(1):W78-84.
2. SasamoriH, Saiki M, Suyama J, et al.
Utility of apparent diffusion coefficients in the evaluation of solid renal tumors at 3T. MagnReson Med Sci. 2014;13(2):89-95.
3. Sevcenco S, Heinz-Peer G, Ponhold L, et al.
Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. EurJ Radiol. 2014 Jun;83(6):909-13.
4. Yu X, Lin M, Ouyang H, et al.
Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI.
EurJ Radiol. 2012 Nov;81(11):3061-6.
5. PaudyalB, Paudyal P, Tsushima Y, et al.
The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol. 2010 Apr;83(988):336-43.
RCC and PET-CT
1. Win AZ, Aparici CM.
Clinical effectiveness of (18)f-fluorodeoxyglucose positron emission tomography/computed tomography in management of renal cell carcinoma: a single institution experience. World J Nucl Med. 2015 Jan-Apr;14(1):36-40.
2. Sharma P, Karunanithi S, Chakraborty PS, et al.
18F-Fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. NuclMed Commun. 2014 Dec;35(12):1247-53.
3. Lee H, Hwang KH, Kim SG, et al.
Can Initial (18)F-FDG PET-CT Imaging Give Information on Metastasis in Patients with Primary Renal Cell Carcinoma? NuclMed Mol Imaging. 2014 Jun;48(2):144-52.
FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med. 2013 Aug;2(4):545-52.
6. Nakhoda Z, Torigian DA, Saboury B, et al.
Assessment of the diagnostic performance of (18)F-FDG-PET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med. 2013 Jan-Apr;16(1):19-24.
7. Wang HY, Ding HJ, Chen JH, et al.
Meta-analysis of the diagnostic performance of [18F]FDG-PETand PET/CT in renal cell carcinoma. Cancer Imaging. 2012 Oct 26;12:464-74.
8. Namura K, Minamimoto R, Yao M, et al.
Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer. 2010 Dec 3;10:667.
9. Mueller-Lisse UG, Mueller-Lisse UL.
Imaging of advanced renal cell carcinoma. World J Urol. 2010 Jun;28(3):253-61.
10. Rodríguez Martínez de Llano S, Jiménez-Vicioso A, et al.
Clinical impact of (18)F-FDG PET in management of patients with renal cell carcinoma.
1. Priola AM, Priola SM, Di Franco M, et al.Computed tomography and thymoma: distinctive findings in invasive and noninvasive thymoma and predictive features of recurrence.
RadiolMed. 2010 Feb;115(1):1-21.
2. Tomiyama N, Müller NL, Ellis SJ, et al.
Invasive and noninvasive thymoma: distinctive CT features.
Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis?
Am J Roentgenol. 2004 Aug;183(2):283-9.
4. Harris K, Elsayegh D, Azab B, et al.10.1186/1477-7819-9-95.
Thymoma calcification: is it clinically meaningful?
World J SurgOncol. 2011 Aug 23;9:95.
5. Hu YC, Wu L, Yan LF, et al.
Predicting subtypes of thymic epithelial tumors using CT: new perspective based on a comprehensive analysis of 216 patients.
Sci Rep. 2014 Nov 10;4:6984.
6. Sadohara J, Fujimoto K, Müller NL, et al.
Thymic epithelial tumors: comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas, and thymic carcinomas.
Eur J Radiol. 2006 Oct;60(1):70-9.
7. Inoue A, Tomiyama N, Fujimoto K, et al.
MR imaging of thymic epithelial tumors: correlation with World Health Organization classification.
Radiat Med.2006 Apr;24(3):171-81.
8. Han J, Lee KS, Yi CA, et al.
Thymic epithelial tumors classified according to a newly established WHO scheme: CT and MR findings.
Korean J Radiol. 2003 Jan-Mar;4(1):46-53.
★Diffusion-weighted images in thymomas.
1. Abdel Razek AA, Khairy M Nada N.
Diffusion-weighted MR imaging in thymic epithelial tumors: correlation with World Health Organization classification and clinical staging.
Radiology. 2014 Oct;273(1):268-75.
2. Priola AM, Priola SM, Giraudo MT, et al.
Chemical-shift and diffusion-weighted magnetic resonance imaging of thymus in myasthenia gravis: usefulness of quantitative assessment.
Invest Radiol. 2015 Apr;50(4):228-38
3. Seki S, Koyama H, Ohno Y, et al.
Diffusion-weighted MR imaging vs. multi-detector row CT: Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors
Eur J Radiol. 2014 May;83(5):835-42.
4. Shin KE, Yi CA, Kim TS, et al.
Diffusion-weighted MRI for distinguishing non-neoplastic cysts from solid masses in the mediastinum: problem-solving in mediastinal masses of indeterminate internal characteristics on CT. EurRadiol. 2014 Mar;24(3):677-84.